Phase-Amplitude Coupling in Spontaneous Mouse Behavior
نویسندگان
چکیده
منابع مشابه
Phase-Amplitude Coupling in Spontaneous Mouse Behavior
The level of activity of many animals including humans rises and falls with a period of ~ 24 hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven by a molecular feedback loop with an approximately 24 hour cycle period and is influenced by the environment, most notably the light:dark cycle. In addition to the circadian oscillations, behavior of many ...
متن کاملPhase-amplitude coupling supports phase coding in human ECoG
Prior studies have shown that high-frequency activity (HFA) is modulated by the phase of low-frequency activity. This phenomenon of phase-amplitude coupling (PAC) is often interpreted as reflecting phase coding of neural representations, although evidence for this link is still lacking in humans. Here, we show that PAC indeed supports phase-dependent stimulus representations for categories. Six...
متن کاملCorticostriatal coordination through coherent phase-amplitude coupling.
The corticostriatal axis is the main input stage of the basal ganglia and is crucial for their role in motor behavior. Synchronized oscillations might mediate interactions between cortex and striatum during behavior, yet direct evidence remains sparse. Here, we show that, during motor behavior, low- and high-frequency oscillations jointly couple cortex and striatum via cross-frequency interacti...
متن کاملThalamocortical control of propofol phase-amplitude coupling
The anesthetic propofol elicits many different spectral properties on the EEG, including alpha oscillations (8-12 Hz), Slow Wave Oscillations (SWO, 0.1-1.5 Hz), and dose-dependent phase-amplitude coupling (PAC) between alpha and SWO. Propofol is known to increase GABAA inhibition and decrease H-current strength, but how it generates these rhythms and their interactions is still unknown. To inve...
متن کاملLaminar Distribution of Phase-Amplitude Coupling of Spontaneous Current Sources and Sinks
Although resting-state functional connectivity is a commonly used neuroimaging paradigm, the underlying mechanisms remain unknown. Thalamo-cortical and cortico-cortical circuits generate oscillations at different frequencies during spontaneous activity. However, it remains unclear how the various rhythms interact and whether their interactions are lamina-specific. Here we investigated intra- an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0162262